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Seismic imaging

I Produce images of the subsurface of the Earth by processing seismic
reflection data created by natural or artificial sources and collected
at receivers at the surface.

I Data is produced by sending acoustic/elastic waves generated by
controlled sources at the surface into the medium and recording the
reflection waves at receivers (geophones) also located at the surface.

I Applications: imaging the lithosphere, imaging glaciers, subsurface
structures in volcanic area, detect ocean’s internal tides,
hydrocarbon exploration ...
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Sharp-interface models for salt geometry inversion

[Lewis, Vigh 2016] “Salt bodies have a sharp velocity contrast to the
sediment velocities at their boundaries and very irregular geometries, any
errors in the location of the salt boundaries in the model will lead to a
much larger error in the waves traveling through them.”

Figure: Pluto velocity model (left), Sigsbee2a velocity model (center) top left
portion of BP2004 velocity model ( right)
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Acoustic wave equation

I 2D acoustic wave equation with Perfectly Matched Layer (PML)
from [Grote and Sim 2010], [Kaltenbacher et al. 2013], used to
model a semi-infinite domain and suppress parasitic wave reflections.

∂2
ttu + trΨ1∂tu + trΨ2u −∇ · (c2∇u)−∇ · p = c2f , in D × [0,T ]

∂tp + Ψ1p + Ψ2(c2∇u)= 0 in D × [0,T ],

u
∣∣
t=0

= 0 in D,
∂tu
∣∣
t=0

= 0 in D,
p
∣∣
t=0

= 0 in D,
∂tu + c∇u · n = 0 on Γ× [0,T ]

p · n = 0 on Γ× [0,T ]

I D ⊂ R2 is a rectangle with boundary Γ.

I c is the P-wave velocity.

I f is a source term.

I Ψ1,Ψ2 are damping matrices.
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Sharp-interface model

I c = c0χΩ + c1χD\Ω and c0, c1 : D → R are Lipschitz functions.

I χΩ(x) = 1 for x ∈ Ω and χΩ(x) = 0 for x ∈ D \ Ω.

I the unknown interface is the boundary of Ω

Figure: Wave velocity c = c0χΩ + c1χD\Ω. Measurements on Γn.
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Shape optimization approach for FWI

I Shape optimization approach:

minimize J(Ω) =
1

2

Ns∑
i=1

Nm∑
j=1

∫ T

0

(ui (xj , t)− di (xj , t))2 dt,

I c = c0χΩ + c1χD\Ω is piecewise Lipschitz and the minimization
variable is the geometry Ω.

I {fi}Ns

i=1 is a given set of sources (shots).

I ui is the acoustic pressure corresponding to fi , ui depends on Ω
through c .

I di (xj , ·) denotes the seismogram corresponding to the source fi and
the receiver at xj .

I c0 and c1 can be given or unknown functions, depending on the
application.
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Sharp-interface models for salt geometry inversion

I Tikhonov regularization tends to produce smooth velocity models,
which precludes the reconstruction of singular features such as sharp
interfaces, discontinuities, and high contrasts.

I An accurate representation of the salt body interface may
considerably improve the quality of the images.

I The incorporation of prior information about sharp interfaces and
high contrast explicitly in the modeling of the problem is especially
advantageous for inverse problems (regularization effect).
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Finite elements or finite differences?

I Traditionally, FWI is solved using finite difference methods (FDM)
with structured grids, which is convenient for large-scale problems
and explicit time-stepping.

I The finite difference approach has been studied in:
Level set-based shape optimization approach for sharp-interface
reconstructions in time-domain full waveform inversion
Y. F. Albuquerque, A. Laurain, I. Yousept,
SIAM Journal on Applied Mathematics, 81(3), 939-964, (2021)

I The sharp interface of the salt body is irregular in shape and
therefore requires relatively fine structured grid resolution to
accurately resolve using FDM.

I Finite element methods (FEM) permit the usage of variable
unstructured meshes that can more efficiently model these sharp
interfaces.

I We rely on a distributed expression of the shape derivative which is
more accurate than a boundary expression using FEM.
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Shape derivative

I Ts : D → D is a given diffeomorphism, with Ωs := Ts(Ω) ⊂ D.

I J(Ωs) is a shape functional.

I Shape derivative: dJ(Ω)(θ) = lims↘0
J(Ωs )−J(Ω)

s

I Velocity θ = ∂sTs |s=0

I Example: Ts(x) = (I + sθ)(x) for s ∈ [0, τ ].

Ω Ωs = Ts(Ω)

Ts

T−1
s
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Shape derivative for FWI

I Cost functional for FWI:

J(Ω) =
1

2

Ns∑
i=1

Nm∑
j=1

∫ T

0

(ui (xj , t)− di (xj , t))2 dt.

I di are the seismograms and xj the receiver positions.

I Distributed shape derivative given by:

dJ(Ω)(θ) =

∫
D

S1 : Dθ + S0 · θ,

S1 =

∫ T

0

[
−∂tu∂tu† + c2∇u · ∇u†

]
In − c2(∇u ⊗∇u† +∇u† ⊗∇u) dt,

S0 =

∫ T

0

(2c∇u · ∇u†)∇̃c .

I ∇̃c(x) := ∇c0(x)χΩ(x) +∇c1(x)χD\Ω(x) 6= ∇c(x).
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Adjoint state equation

I Optimize-then-discretize approach (the adjoint state is computed in
the continuous domain).

I The adjoint for the modified acoustic wave equation is given by:

∂2
ttu
† − trΨ1∂tu

† + trΨ2u
† −∇ · (c2∇u†)−∇ · (c2Ψ2p†)

= −
Nm∑
j=1

[u(xj)− d(xj)] in D × [0,T ],

−∂tp† + Ψ1p† +∇u†= 0 in D × [0,T ],

u†
∣∣
t=T

= 0 in D,
∂tu
†∣∣

t=T
= 0 in D,

p†
∣∣
t=T

= 0 in D,
−∂tu† + cΨ2p† · n + c∇u† · n = 0 on Γ× [0,T ]

p† · n = 0 on Γ× [0,T ]
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Descent direction

I To get a descent direction θ for the optimization problem, we solve
(for θ) an elliptic PDE using finite elements:∫
D
α1gDθ : Dξ + α2gθ · ξ = −dJ(Ω)(ξ)

= −
∫
D

S1 : Dξ + S0 · ξ for all ξ ∈ (H1
0 (D))2

I Here g > 0 is a weight function.
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Shape update

I Shape is represented with an indicator function: χ : D × [0, s0]→ R,
equal to 1 for points inside the salt body and 0 outside.

I Shape updates are obtained by solving the transport equation to
advect χ for a fixed number of pseudo-timesteps (O(10)):

∂sχ+ θ · ∇χ = 0 in D × [0, s0], (1)

in which θ is the descent direction.

I (1) was solved for 10 pseudo-timesteps (value selected through trial
and error).

I (1) was discretized in space using a 0th order discontinuous Galerkin
(DG0) approach and a 4th order Runge-Kutta scheme was used to
discretize in time.
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Implementation

I Built using spyro: Acoustic wave modeling in Firedrake
https://github.com/krober10nd/spyro

Functions to compute descent direction θ and advect the indicator
function χ.

I In space:
For wave eq.: higher-order mass lumped elements (P < 5).
For transport eq.: 0th order discontinuous Galerkin.

I In time:
For wave equation: central finite difference.
For transport equation: RK4.

(a) P2 (b) KMV2 (c) P3 (d) KMV3

Figure: Some two-dimensional Lagrange and KMV elements
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Implementation

Start, k = 0

Initialization
Ω0

Compute solutions of
state u and adjoint u†

Evaluate cost
functional J(Ωk)

J(Ωk)− J(Ωk−1)
> 0 ?

Assemble
shape derivative

Compute new
descent direction θk

θk ← θk−1
Update indicator
function → χk+1

Update shape → Ωk+1

Collect data
measurements (d)

k > 0

k = 0

k
=

k
+

1

No

Yes

Line search
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Unstructured triangular meshes

I Developed with SeismicMesh:
https://github.com/krober10nd/SeismicMesh.

I Variable resolution, graded triangular meshes adapted to P-wave
field.

(a) A Sigsbee 2B stratigraphy model (b) the model meshed with SeismicMesh

Figure: Example of meshing the Sigsbee 2B stratigraphy model.
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Numerical results - EAGE Salt

I First we test our implementation with a 2D slice of the EAGE model.
I 20 shots, 400 receivers, 3 seconds, 2 Hz noiseless Ricker wavelet

Figure: (a) target model, (b) starting model. A slice of the EAGE Salt model
simplified to two velocities. Sources and receivers are shown in (a),(b).
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Numerical results - EAGE Salt

I After 5 hours and 83 iterations on 20 cores.

I Cost functional exhibited a three order of magnitude reduction from
1.53e − 05 at the first iteration to 7.05e − 08 at the final iteration

Figure: Optimization results for the EAGE problem.
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Numerical results - Sigbsee 2B stratigraphy

I The major difference in this case is the background velocity is
non-constant.

I 120 shots, 1000 receivers, 2 Hz noiseless Ricker integrated for 7
seconds.

(a) guess model. (b) target model.

Figure: Sigsbee2b stratigraphy problem.
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Numerical results - Sigsbee 2B stratigraphy

I The ground truth simulations are conducted on the mesh of the
target model and the inversion uses the mesh of the guess model.

(a) mesh of the guess model. (b) mesh of the target model.

Figure: Meshes of the Sigsbee 2B stratigraphy model.
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Extended background velocity

I We use the background velocity of the Sigsbee 2B stratigraphy
model and extend it inside the salt.

I The extension is such that sharp discontinues do not appear near the
salt body’s interface with the background velocity field.

I The background velocity field is fixed throughout the optimization.

Figure: The extended background velocity field for the inversion.
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Numerical results - Sigsbee 2B stratigraphy

I 120 cores (one core per shot) to perform 96 iterations took 13 hours.

I Good agreement along the top of the salt body, little to no change
on the bottom-of-the-salt.

Figure: The final optimization result overlaid on the true velocity model.
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Conclusion

I In this work we have considered a finite element approach with a
PML formulation for the acoustic wave equation.

I The FE approach allows a more accurate representation of the salt
body interface.

I Promising first results but the reconstruction needs to be improved
at the bottom of the salt.

I The reconstruction of the background velocity will also be
implemented.

I The finite difference approach has been studied in:
Level set-based shape optimization approach for sharp-interface
reconstructions in time-domain full waveform inversion
Y. F. Albuquerque, A. Laurain, I. Yousept,
SIAM Journal on Applied Mathematics, 81(3), 939-964, (2021)
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