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A LEVEL SET-BASED STRUCTURAL OPTIMIZATION CODE USING FENICS

ANTOINE LAURAIN

ABSTRACT. This paper presents an educational code written using FEniCS, based on the level set method, to perform
compliance minimization in structural optimization. We use the concept of distributed shape derivative to compute a de-
scent direction for the compliance, which is defined as a shape functional. The use of the distributed shape derivative is
facilitated by FEniCS, which allows to handle complicated partial differential equations with a simple implementation.
The code is written for compliance minimization in the framework of linearized elasticity, and can be easily adapted
to tackle other functionals and partial differential equations. We also provide an extension of the code for compliant
mechanisms. We start by explaining how to compute shape derivatives, and discuss the differences between the dis-
tributed and boundary expressions of the shape derivative. Then we describe the implementation in details, and show
the application of this code to some classical benchmarks of topology optimization. The code is available at http://
antoinelaurain.com/compliance.htm, and the main file is also given in the appendix.

1. INTRODUCTION

The popular “99 line” Matlab code by Sigmund published in 2001 [41] has started a trend of sharing and
publishing educational codes for structural optimization. Since then, an upgrade of the “99 line” code has been
published, improving speed and reducing the code size to 88 lines; see [7]. The codes of [7, 41] are written for
Matlab and are based on the solid isotropic microstructure with penalty (SIMP) approach [10, 51]. Various other
codes have been published using different approaches and/or other platforms than Matlab. We review here several
categories of approaches to tackle this problem.

In the SIMP approach the material is allowed to have intermediate values, and the optimization variables are the
material densities of the mesh elements. The intermediate values are also penalized using a power law to enforce
0 − 1 values. Using filtering techniques, it provides feasible designs. Considering SIMP approaches as in [41],
Talischi et al. have introduced PolyMesher [45] and PolyTop [46] to provide a MATLAB implementation of
topology optimization using a general framework for finite element discretization and analysis.

Another category of approaches for topology optimization which has emerged after the SIMP approach are
level set methods. They consist in representing the boundary of the moving domain Ω as the zero level set of a
function φ. Level set methods were introduced by Osher and Sethian [34] in the context of the mean curvature flow
to facilitate the modelization of topological changes during curve evolution. Since then, they have been applied to
many shape optimization and boundary perturbations problems. There is already a substantial literature for level
set methods applied to structural optimization, see [3, 4, 36, 40, 48] for the pioneering works using this approach,
and [47] for a review. Early references for level set approaches include a code in FEMLAB [29] by Liu et al. in
2005, a Matlab code [13] in the spirit of the “99 line” code, by Challis in 2010, and a a 88 lines Matlab code [37]
using a reaction-diffusion equation by Otomori et al in 2014.

Other approaches to structural topology optimization include phase-field methods [49], level-set methods with-
out Hamilton-Jacobi equations [8], and an algorithm based on the notion of topological derivative [6]. We also
mention an early FreeFem++ code [2] by Allaire and Pantz in 2006, implementing the boundary variation method
and the homogenization. For a critical comparison of four different level-set approaches and one phase-field
approach, see [22].

The code presented in the present paper enters the category of level set methods. In the usual approach, the
concept of shape derivative [17, 42] is used to compute the sensitivity of the objective functional. Is is known
that the shape derivative is a distribution on the boundary of the domain, and algorithms are usually based on this
property. This means that the shape derivative is expressed as a boundary integral, and then extended to the entire
domain or to a narrow band for use in the level set method; see [3, 4, 13, 20, 21, 24, 48] for applications of this
approach. The shape derivative can also be written as a domain integral, which is called distributed, volumetric or
domain expression of the shape derivative; see [11, 18, 26, 28], and [25, 32, 44] for applications.

From a numerical point of view, the distributed expression is often easier to implement than the boundary
expression as it is a volume integral. Other advantages of the distributed expression are presented in [11, 26]. In
[11], it is shown that the discretization and the shape differentiation processes commute for the volume expression
but not for the boundary expression; i.e., a discretization of the boundary expression does not generally lead to the
same expression as the shape derivative computed after the problem is discretized. In [26], the authors conclude
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that “volume based expressions for the shape gradient often offer better accuracy than the use of formulas involving
traces on boundaries”. See also [1] for a discussion about the difficulty to use the boundary expression in the multi-
material setting. In the present paper, the main focus is the compact yet efficient implementation of the level set
method for structural optimization allowed by the distributed shape derivative. We also show that it is useful to
handle the ersatz material approach. Combining these techniques, we obtain a straightforward and general way
of solving the shape optimization problem, from the rigorous calculation of the shape derivative to the numerical
implementation.

The choice of FEniCS for the implementation is motivated by its ability to facilitate the implementation of
complicated variational formulations, thanks to a near-mathematical notation. This is appropriate in our case
since the expression of the distributed shape derivative is usually lengthy. The FEniCS Project (https://
fenicsproject.org/) is a collaborative project with a particular focus on automated solution of differential
equations by finite element methods; see [5, 30].

The paper is structured as follows. In Section 2, we recall the definition of the shape derivative, and show
the relation between its distributed and boundary expression. In Section 3, we compute the shape derivative in
distributed and boundary form for a general functional in linear elasticity using a Lagrangian approach, and we
discuss the particular cases of compliance and compliant mechanisms. In Section 4, we show how to obtain
descent directions. In section 5, we explain the level set method used in the present paper, which is a variation
of the usual level set method suited for the distributed shape derivative. In this section we also describe the
discretization and reinitialization procedures. In section 6, we explain in details the numerical implementation.
In section 7, we show numerical results for several classical benchmarks. Finally, in section 8, we discuss the
computation time and the influence of the initialization on the optimal design. In the appendix, we give the code
for the main file compliance.py.

2. VOLUME AND BOUNDARY EXPRESSIONS OF THE SHAPE DERIVATIVE

In this section we recall basic notions about the shape derivative, the main tool used in this paper. Let P(D)
be the set of subsets of D, where the so-called universe D ⊂ R

m is assumed to be a piecewise smooth open and
bounded set, and P be a subset of P(D). In our numerical application, D is a rectangle. Let k ≥ 1 be an integer,
Ck

c (R
m,Rm) be the set of k-times continuously differentiable vector-valued functions with compact support. Let

L ⊂ ∂D be the set of points where the normal n is not defined, i.e. the set of singular points of ∂D, such as the
corners of a rectangle. Define

Θk(D) = {θ ∈ Ck
c (R

m,Rm)|θ · n|∂D\L = 0 and θ|L = 0}

equipped with the topology induced by Ck
c (R

m,Rm). Consider a vector field θ ∈ Θk(D) and the associated flow
T θ
t : Rm → R

m, t ∈ [0, τ ] defined for each x0 ∈ R
m as T θ

t (x0) := x(t), where x : [0, τ ] → R solves

ẋ(t) = θ(x(t)) for t ∈ [0, τ ], x(0) = x0.(1)

We use the simpler notation Tt = T θ
t when no confusion is possible. Let Ω ∈ P(D) and denote n the outward

unit normal vector to Ω. We consider the family of perturbed domains

(2) Ωt := T θ
t (Ω).

The choice of Θk(D) guarantees that T θ
t maps D onto D, so that Ωt ⊂ D; see [42, Theorem 2.16].

Definition 1. Let J : P → R be a shape function.

(i) The Eulerian semiderivative of J at Ω in direction θ ∈ Θk(D), when the limit exists, is defined by

(3) dJ(Ω; θ) := lim
tց0

J(Ωt)− J(Ω)

t
.

(ii) J is shape differentiable at Ω if it has a Eulerian semiderivative at Ω for all θ ∈ Θk(D) and the mapping

dJ(Ω) : Θk(D) → R, θ 7→ dJ(Ω; θ)

is linear and continuous, in which case dJ(Ω) is called the shape derivative at Ω.

When the shape derivative is computed as a volume integral, it is convenient to write it in the following partic-
ular form.

Definition 2. Let Ω ∈ P be open. A shape differentiable function J admits a tensor representation of order 1 if

there exist tensors Sl ∈ L1(D,Ll(Rm,Rm)), l = 0, 1, such that

dJ(Ω; θ) =

∫

D

S1 : Dθ + S0 · θ dx,(4)
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for all θ ∈ Θk(D). Here Ll(Rm,Rm) denotes the space of multilinear maps from (Rm)l to R
m.

Expression (4) is called distributed, volumetric, or domain expression of the shape derivative. Under natural
regularity assumptions, the shape derivative only depends on the restriction of the normal component θ · n to the
interface ∂Ω. This fundamental result is known as the Hadamard-Zolésio structure theorem in shape optimization;
see [17, pp. 480-481]. From the tensor representation (4), one immediately obtains such structure of the shape
derivative as follows.

Proposition 1. Let Ω ∈ P and assume ∂Ω is C2. Suppose that dJ(Ω) has the tensor representation (4). If

Sl, l = 0, 1 are of class W 1,1 in Ω and D \ Ω, then we obtain the so-called boundary expression of the shape

derivative:

(5) dJ(Ω)(θ) =

∫

∂Ω

g θ · n ds,

with g := [(S+
1 − S−

1 )n] · n, where + and − denote the restrictions of the tensor to Ω and D \ Ω, respectively.

See [28] for a proof of Proposition 1 in a more general case. Usually the boundary expression (5) is used
to devise level set-based numerical methods, but in this paper we present an alternative approach based on the
volume expression (4), which allows a simple implementation. We use a Lagrangian approach to compute the
tensor representation (4).

Further, we sometimes denote the distributed expression (4) by dJvol(Ω; θ), and the boundary expression (5)
by dJsurf(Ω; θ) when we compare them. Note that if the domain is C2, Proposition 1 shows that

dJvol(Ω; θ) = dJsurf(Ω; θ).

When Ω is less regular than C2, it may happen that dJ(Ω)(θ) cannot be written in the form (5). Note that even in
this case, dJvol(Ω; θ) is a distribution with support on the boundary, even if written as a domain integral.

3. SHAPE DERIVATIVES IN THE FRAMEWORK OF LINEAR ELASTICITY

3.1. Shape derivative of the volume. We introduce a parameterized domain Ωt = T θ
t (Ω) as in (2). We start

with the simple case of the volume

V(Ωt) :=

∫

Ωt

1 dx,

which is useful to become familiar with the computation of shape derivatives. Using the change of variable
x 7→ Tt(x), we get

V(Ωt) :=

∫

Ω

ξ(t) dx,

where ξ(t) := | detDTt| = detDTt for t small enough. We have ξ′(0) = d
dt detDTt|t=0 = div θ; see for

instance [17, Theorem 4.1, pp. 182]. Thus the distributed expression of the shape derivative of the volume is
given by

dVvol(Ω; θ) =

∫

Ω

div θ =

∫

Ω

Id : Dθ,

where Id is the identity matrix. We have obtained the distributed expression (4) of the shape derivative of the
volume with S1 = Id and S0 = 0.

Applying Proposition 1, assuming ∂Ω is C2, we get the usual boundary expression of the shape derivative

dVsurf(Ω; θ) =

∫

∂Ω

θ · n,

which, in this case, is the same as applying Stokes’ theorem.

3.2. The ersatz material approach. We use the framework of the ersatz material, which is common in level
set-based topology optimization of structures; see for instance [4, 48]. It is convenient as it allows to work on
a fixed domain D instead of the variable domain Ω, but also can create instability issues as pointed out in [15].
The idea of the ersatz material method is that the fixed domain D is filled with two homogeneous materials with
different Hooke elasticity tensors A0 and A1 defined by

Aiξ = 2µiξ + λi(Trξ)Id, i = 0, 1.

with Lamé moduli λi and µi for i = 0, 1, Id is the identity matrix and ξ is a matrix. The first material lays in the
open subset Ω of D and the background material fills the complement so that Hooke’s law is written in D as

AΩ = A0χΩ + ǫA0χD\Ω,(6)
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where χΩ denotes the indicator function of Ω, and ǫ is a given small parameter. Hence the region D\Ω represents
a “weak phase” whereas Ω is the “strong phase”. The optimization is still performed with respect to the variable
set Ω, but here Ω is embedded in the fixed, larger set D.

Note that we compute the shape derivative for the PDE including the ersatz material, unlike what is usually
done in the literature; see Section 3.7 for a more detailed discussion of this point.

Let Ω ⊂ D ⊂ R
m, m = 2, 3, where D is a fixed domain whose boundary ∂D is partitioned into four

subsets Γd, Γn, Γs and Γ. A homogeneous Dirichlet (respectively Neumann) boundary condition is imposed
on Γd (resp. Γ). On Γn, a non-homogeneous Neumann condition is imposed, which represents a given surface
load g ∈ H−1/2(Γn)

m. The free interface between the weak and strong phase is ∂Ω. A spring with stiffness
ks is attached on the boundary Γs, which corresponds to a Robin boundary condition; this condition is used for
mechanisms. Let H1

d(D)m be the space of vector fields in H1(D)m which satisfy the homogeneous Dirichlet
boundary conditions on Γd.

We define a parameterized domain Ωt = T θ
t (Ω) as in (2), and we assume additionally that T θ

t = id on
Γd ∪ Γn ∪ Γs ∪ Γm, where id is the identity.

In the ersatz material approach, the displacement field u ∈ H1
d(D)m is the solution of the linearized elasticity

system

− divAΩe(u) = 0 in D,(7)

u = 0 on Γd,(8)

AΩe(u)n = g on Γn,(9)

AΩe(u)n = 0 on Γ,(10)

AΩe(u)n = −ksu on Γs,(11)

where the symmetrized gradient is e(u) = (Du +DuT)/2, and DuT denotes the transpose of Du. We consider
the following functional

J(Ω) := c1

∫

D

AΩe(u(x)) : e(u(x)) dx+ c2

∫

D

FD(x, u(x)) dx + c3

∫

Γm

FΓ(x, u(x)) dsx.(12)

We assume that FD and FΓ are smooth functions of u, that FD is C1 with respect to the first argument, and
Γm ⊂ ∂D. The set Γm ⊂ ∂D is a region where the shape displacements are monitored and is used for mechanisms
only; it is set to Γm = ∅ in other cases. This general functional covers several important cases such as the
compliance and certain functionals used for compliant mechanisms. The case (c1, c2, c3) = (1, 0, 0) corresponds
to the compliance. The case of compliant mechanisms may be achieved by an appropriate choice of FD and FΓ,
see Section 3.6.

We denote by ut the solution of (7)-(11) with Ω substituted by Ωt. Defining ut := ut ◦ Tt and using the chain
rule we have the relation

(13) Dut = D(ut ◦ Tt) = (Dut) ◦ TtDTt,

and consequently

E(t, ut) := e(ut) ◦ Tt = (DutDT−1
t +DT−T

t (Dut)T)/2.(14)

The variational formulation of the PDE is to find ut ∈ H1
d(D)m such that

(15)
∫

D

AΩt
e(ut) : e(vt) +

∫

Γs

ksut · vt =

∫

Γn

g · vt,

for all vt ∈ H1
d(D)m. We proceed with the change of variable x 7→ Tt(x) in (15) which yields
∫

D

[AΩt
e(ut)] ◦ Tt : e(vt) ◦ Tt ξ(t) +

∫

Γs

ksut · vt =

∫

Γn

g · vt, for all vt ∈ H1
d(D)m,(16)

where ξ(t) := | detDTt| is the Jacobian of the transformation x 7→ Tt(x). Note that neither the Jacobian nor Tt
needs to appear in the integrals on Γn and Γs, since we have assumed Tt = id on Γd ∪ Γn ∪ Γs ∪ Γm. In view of
(14), we can rewrite (16) as

(17)
∫

D

AΩE(t, ut) : E(t, v) ξ(t) +

∫

Γs

ksu
t · v =

∫

Γn

g · v,

for all v ∈ H1
d(D)m. In a similar way, we have

J(Ωt) = c1

∫

D

AΩt
e(ut) : e(ut) + c2

∫

D

FD(x, ut(x)) dx + c3

∫

Γm

FΓ(x, ut(x)) dsx,
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and using the change of variable x 7→ Tt(x) yields

J(Ωt) = c1

∫

D

AΩE(t, ut) : E(t, ut) ξ(t) + c2

∫

D

FD(Tt(x), u
t(x))ξ(t)(x) dx

+ c3

∫

Γm

FΓ(x, u
t(x)) dsx.

(18)

3.3. Shape derivative using a Lagrangian approach. To compute the shape derivative of J(Ω), we use the
averaged adjoint method, a Lagrangian-type method introduced in [43]. Formally, the Lagrangian G is obtained
by summing the expression (18) of the cost functional and the variational formulation (17) of the PDE constraint,
and (ut, v) is replaced with the variables (ϕ, ψ); see [28, 43] for a rigorous mathematical presentation and detailed
explanations. Writing A instead of AΩ for simplicity, this yields

G(t, ϕ, ψ) :=c1

∫

D

AE(t, ϕ) : E(t, ϕ) ξ(t) + c2

∫

D

FD(Tt(x), ϕ(x))ξ(t)(x) dx + c3

∫

Γm

FΓ(x, ϕ(x)) dsx

+

∫

D

AE(t, ϕ) : E(t, ψ) ξ(t) +

∫

Γs

ksϕ · ψ −

∫

Γn

g · ψ.

In view of (17) and (18), we have J(Ωt) = G(t, ut, ψ) for all ψ ∈ H1
d(D)m. Thus the shape derivative can be

computed as

(19) dJ(Ω; θ) =
d

dt
(G(t, ut, ψ))|t=0.

The advantage of the Lagrangian is that, under suitable assumptions, one can show that

d

dt
(G(t, ut, ψ))|t=0 = ∂tG(0, u

0, p0).(20)

which essentially means that it is not necessary to compute the derivative of ut to compute dJ(Ω; θ). In this paper
we assume for simplicity that (20) is true for the problem under consideration, but note that this result can be made
mathematically rigorous using the averaged adjoint method; see [23, 28, 43].

The adjoint is given as the solution of the following first-order optimality condition

∂ϕG(0, u, p)(ϕ̂) = 0 for all ϕ̂ ∈ H1
d(D)m,

which yields, using A = AT,

2c1

∫

D

AE(0, u) : E(0, ϕ̂) + c2

∫

D

∂uFD(x, u(x)) · ϕ̂(x) dx + c3

∫

Γm

∂uFΓ(x, u(x)) · ϕ̂(x) dsx

+

∫

Γs

ksϕ̂ · p+

∫

D

AE(0, ϕ̂) : E(0, p) = 0, for all ϕ̂ ∈ H1
d(D)m.

Since E(0, v) = e(v) for v ∈ H1
d(D)m, and A = AT, we get the adjoint equation

∫

D

Ae(p) : e(ϕ̂) +

∫

Γs

ksp · ϕ̂ = −2c1

∫

D

Ae(u) : e(ϕ̂)− c2

∫

D

∂uFD(x, u(x)) · ϕ̂(x) dx

− c3

∫

Γm

∂uFΓ(x, u(x)) · ϕ̂(x) dsx for all ϕ̂ ∈ H1
d(D)m.

(21)

Using (19) and (20), we obtain

dJ(Ω; θ) =c1

∫

D

A∂tE(0, u) : E(0, u) + c1

∫

D

AE(0, u) : ∂tE(0, u) +AE(0, u) : E(0, u) div θ

+ c2

∫

D

∂xFD(x, u(x)) · θ(x) + FD(x, u(x)) div θ(x) dx

+

∫

D

A∂tE(0, u) : E(0, p) +

∫

D

AE(0, u) : ∂tE(0, p) +AE(0, u) : E(0, p) div θ

We also compute, using E(0, v) = e(v) for v ∈ H1
d(D)m,

∂tE(0, v) = (−DvDθ −DθTDvT)/2.
5
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FIGURE 1. Design domain of cantilever (left) and example of optimal design (right).

Using A = AT we obtain

dJ(Ω; θ) =−

∫

D

1

2
DuT(Ae(p) + (Ae(p))T) : Dθ −

∫

D

1

2
DpT(Ae(u) + (Ae(u))T) : Dθ

+

∫

D

(Ae(u) : e(p) + c1Ae(u) : e(u)) div θ − c1

∫

D

(DuTAe(u) +DuT(Ae(u))T) : Dθ

+ c2

∫

D

∂xFD(x, u(x)) · θ(x) + FD(x, u(x)) div θ(x) dx.

Using (Ae(v))T = Ae(v) we get

dJvol(Ω; θ) =

∫

D

S1 : Dθ + S0 · θ,(22)

with

S1 =−DuTAΩe(p)−DpTAΩe(u)− 2c1Du
TAΩe(u)

+ (AΩe(u) : e(p) + c1AΩe(u) : e(u) + c2FD(·, u))Id,(23)

S0 =c2∂xFD(·, u).(24)

Formula (22) is convenient for the numerics as it can be implemented in a straightforward way in FEniCS.

3.4. Compliance. The case of the compliance is obtained by setting (c1, c2, c3) = (1, 0, 0). This yields S0 ≡ 0,
p = −2u and (23) becomes

(25) S1 = 2DuTAΩe(u)−AΩe(u) : e(u)Id.

See Figure 1 for an example of design domain, boundary conditions, and optimal design for minimization of the
compliance.

3.5. Multiple load cases. For multiple load cases and compliance, we consider the set of forces {gi}i∈I and the
compliance is the sum of the compliances associated to each force gi:

J(Ω) :=
∑

i∈I

∫

Γn

gi · ui,

where ui is the solution of the linearized elasticity system corresponding to gi. The shape derivative is in this case

dJvol(Ω; θ) =

∫

D

S1 : Dθ,(26)

with S1 :=
∑

i∈I 2Du
T

i AΩe(ui)−AΩe(ui) : e(ui)Id.

3.6. Inverter mechanism. The displacement inverter converts an input displacement on the left edge to a dis-
placement in the opposite direction on the right edge; see [9] for a detailed description. We take D = (0, 1)2, and
an actuation force g = (gx, 0), gx > 0, is applied at the input point (0, 0.5). We define the output boundary Γout

and input boundary Γin such that Γm = Γout ∪ Γin, Γin = {0} × (a0, a1), Γout = Γs and Γs = {1} × (b0, b1).
An artificial spring with stiffness ks > 0 is attached at the output Γout to simulate the resistance of a work-
piece. In order to maximize output displacement, while limiting the input displacement, we minimize (12) with
(c1, c2, c3) = (0, 0, 1) and

FΓ(x, u(x)) = ηinu1(x)χΓin
(x) + ηoutu1(x)χΓout

(x),
6
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FIGURE 2. Design domain of inverter (left) and optimal design (right) for (Nx,Ny) = (121, 121).

with u = (u1, u2), ηin, ηout some positive constants. Note that u1 > 0 on Γin and u1 < 0 on Γout. We obtain
S0 ≡ 0 and (23) becomes

S1 = −DuTAΩe(p)−DpTAΩe(u) +AΩe(u) : e(p)Id.

For this functional the problem is not self-adjoint and in view of (21), the adjoint p is the solution of
∫

D

Ae(p) : e(ϕ̂) +

∫

Γs

ksp · ϕ̂ = −ηin

∫

Γin

ϕ̂1 − ηout

∫

Γout

ϕ̂1, ∀ϕ̂ ∈ H1
d(D)m.(27)

where ϕ̂ = (ϕ̂1, ϕ̂2). See Figure 2 for an example of design domain, boundary conditions and optimal design for
the inverter.

3.7. Comparison of shape derivatives with and without ersatz material. Usually the boundary expression of
the shape derivative is used in level set methods, and computed for the problem without ersatz material, although
the elasticity system is solved using the ersatz material in the numerics. This small mismatch is justified by the
fact that the tensor of the ersatz material has a small amplitude. The reason why this mismatch is tolerated in the
numerics is probably because the boundary expression of the shape derivative in that case is unpractical to handle
numerically, as it requires to use the jump of the gradient across the moving interface between the strong and the
weak phases; see (37).

In any case, it is more precise to use the proper shape derivative corresponding to the ersatz material framework
for the numerics, in order to avoid this mismatch. Another advantage of using the exact formula for the ersatz
approach is that this formula is actually valid for any value of ǫ, and not only for ǫ small. This can be used for a
mixture of two materials for instance. We show in this section that computing and implementing the formula of
the distributed shape derivative is not more difficult for the ersatz material approach.

First we compare the distributed shape derivative without ersatz material. The elasticity system is in this case

− divAe(u) = 0 in Ω,(28)

u = 0 on Γd,(29)

Ae(u)n = g on Γn,(30)

Ae(u)n = 0 on Γ,(31)

Ae(u)n = −ksu on Γs.(32)

As in Section 3.2, Γd, Γn and Γs are fixed, but in this case Γ = ∂Ω \ (Γn ∪ Γd ∪ Γs) is the free boundary. We
also assume that the interface between Γ and the fixed boundaries is fixed. The Hooke elasticity tensor A satisfies
Aξ = 2µξ+λ tr(ξ)Id, where ξ ∈ R

m×m, µ, λ are the Lamé parameters. The variational formulation of (28)-(32)
consists in finding u ∈ H1

d(Ω)
m such that

∫

Ω

Ae(u) : e(v) +

∫

Γs

ksu · v =

∫

Γn

g · v for all v ∈ H1
d(Ω)

m.

The cost functional is in this case

J0(Ωt) := c1

∫

Ω

Ae(u) : e(u) + c2

∫

Ω

FD(x, u(x)) dx + c3

∫

Γm

FΓ(x, u(x)) dsx.
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A similar calculation as in Section 3.3 yields

dJvol

0 (Ω; θ) =

∫

Ω

S1 : Dθ + S0 · θ,

with

S1 = −DuTAe(p)−DpTAe(u)− 2c1Du
TAe(u) + (Ae(u) : e(p) + c1Ae(u) : e(u) + c2FD(·, u))Id,(33)

S0 = c2∂xFD(·, u).(34)

In the case (c1, c2, c3) = (1, 0, 0), which corresponds to the compliance, we have S0 ≡ 0 and p = −2u, yielding

S1 := 2DuTAe(u)−Ae(u) : e(u)Id in Ω.(35)

A similar formula can be found in [32, Section 2.5], for a slightly different case, and where S1 is identified as
the energy-momentum tensor in continuum mechanics introduced by Eshelby in [19]. Compare also (35) with the
shape derivative in [44, Theorem 3.3], also in the framework of linearized elasticity but for a different functional.

Note that (35) is similar to (25), the main difference being that (25) is defined in D and (35) is defined in Ω.
Thus from a numerical point of view, (25) is not more difficult to implement than (35).

Now we compare the boundary expression of the shape derivatives with and without ersatz material, in the case
of the compliance. Assuming Ω is C2 and using (35) and (5) of Proposition 1, we obtain the boundary expression
of the shape derivative

dJsurf

0 (Ω; θ) =

∫

∂Ω

(S1n · n)θ · n =

∫

Γ

(S1n · n)θ · n,

since ∂Ω \ Γ is fixed. Then we compute

S1n · n = 2DuTAe(u)n · n−Ae(u) : e(u) = 2Ae(u)n ·Dun−Ae(u) : e(u).

On Γ, we have Ae(u)n = 0 which yields

dJsurf

0 (Ω; θ) =

∫

Γ

−Ae(u) : e(u)θ · n,(36)

which is a particular case of the formula in [4, Theorem 7].
In the case of the ersatz material, applying Proposition 1 and assuming ∂Ω is C2, the distributed expression

(22) yields the boundary expression

dJsurf(Ω; θ) =

∫

∂Ω

[(S+
1 − S−

1 )n] · n θ · n,

with

[(S+
1 − S−

1 )n] · n = −JAe(u) : e(u)K + 2A0e(u)
+n ·Du+n− 2ǫA0e(u)

−n ·Du−n,

and where the exponents (·)+ and (·)− denote the restrictions to Ω and D \ Ω, respectively. Also

JvK := γΩ(v)− γD\Ω(v)

denotes the jump of a function v across the interface ∂Ω; here γΩ(v) is the trace of v|Ω on ∂Ω. Using the
transmission conditionA0e(u)

+n = ǫA0e(u)
−n on ∂Ω, we obtain

dJsurf(Ω; θ) =

∫

∂Ω

(2ǫA0e(u
−)n · JDuKn)θ · n−

∫

∂Ω

JAe(u) : e(u)Kθ · n.(37)

The two main differences between (37) and (36) are the small perturbation term (2ǫA0e(u
−)n · JDuKn and the

fact that JAe(u) : e(u)K is a jump across the interface ∂Ω. We observe that (36) is easier to implement than (37)
in a numerical method.

4. DESCENT DIRECTION

For the numerical method we need a descent direction θ, i.e. a vector field satisfying dJ(Ω; θ) < 0. When
dJ(Ω; θ) is written using the boundary expression

dJsurf(Ω; θ) =

∫

∂Ω

G(Ω) θ · n,

then a simple choice is to take θ = −G(Ω) · n. However, this choice assumes that G(Ω) and ∂Ω are quite regular,
and in practice this may yield a θ with a poor regularity and lead to an unstable behaviour of the algorithm such as
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irregular or oscillating boundaries. A better choice is to find a smoother descent direction by finding θ ∈ H(∂Ω)
such that

(38) B(θ, ξ) = −dJsurf(Ω; ξ) for all ξ ∈ H(∂Ω),

where H(∂Ω) is an appropriate Sobolev space of vector fields on ∂Ω and B : H(∂Ω)×H(∂Ω) → R, k ≥ 1, is a
positive definite bilinear form on ∂Ω.

In the case of the present paper we use the distributed expression (22) of the shape derivative, therefore we use
a positive definite bilinear form B : H(D) ×H(D) → R, where H(D) is an appropriate Sobolev space of vector
fields on D. Thus the problem is to find θ ∈ H(D) such that

(39) B(θ, ξ) = −dJvol(Ω; ξ) for all ξ ∈ H(D),

With this choice, the solution θ of (39) is defined on all of D and is a descent direction since dJ(Ω; θ) =
−B(θ, θ) < 0 if θ 6= 0.

It is also possible to combine the two approaches by substituting dJvol(Ω; θ) with dJsurf(Ω; θ) in (39). This
was done in [16] where a strong improvement of the rate of convergence of the level-set method was observed;
see also [12] for a thorough discussion of various possibilities for B. Bilinear forms defined on D are useful for
the level set method which requires θ on D; see Section (5).

In our algorithm we choose H(D) = H1(D)m and

(40) B(θ, ξ) =

∫

D

α1Dθ : Dξ + α2θ · ξ,

with α1 = 1 and α2 = 0.1. We also take the boundary conditions θ · n = 0 on ∂D; see Section 6.11.

5. LEVEL SET METHOD

The level set method, originally introduced in [34], gives a general framework for the computation of evolving
interfaces using an implicit representation of these interfaces. We refer to the monographs [33, 39] for a complete
description of the level set method. The core idea of this method is to represent the boundary of the moving
domain Ωt ⊂ D ∈ R

N as the zero level set of a continuous function φ(·, t) : D → R.
Let us consider the family of domains Ωt ⊂ D as defined in (2). Each domain Ωt can be defined as

(41) Ωt := {x ∈ D, φ(x, t) < 0},

where φ : D×R
+ → R is Lipschitz continuous and called level set function. Indeed, if we assume |∇φ(·, t)| 6= 0

on the set {x ∈ D, φ(x, t) = 0}, then we have

(42) ∂Ωt = {x ∈ D, φ(x, t) = 0},

i.e. the boundary ∂Ωt is the zero level set of φ(·, t).
Let x(t) be the position of a moving boundary point of ∂Ωt, with velocity ẋ(t) = θ(x(t)) according to (1).

Differentiating the relation φ(x(t), t) = 0 with respect to t yields the Hamilton-Jacobi equation:

∂tφ(x(t), t) + θ(x(t)) · ∇φ(x(t), t) = 0 in ∂Ωt ×R
+,

which is then extended to all of D via the equation

(43) ∂tφ(x, t) + θ(x) · ∇φ(x, t) = 0 in D ×R
+,

or alternatively to U ×R
+ where U is a neighbourhood of ∂Ωt.

When θ = ϑnn is a normal vector field on ∂Ωt, noting that an extension to D of the unit outward normal vector
n to Ωt is given by ∇φ/|∇φ|, and extending ϑn to all of D, one obtains from (43) the level set equation

(44) ∂tφ+ ϑn|∇φ| = 0 in D ×R
+.

The initial data φ(x, 0) = φ0(x) accompanying the Hamilton-Jacobi equation (43) or (44) can be chosen as the
signed distance function to the initial boundary ∂Ω0 in order to satisfy the condition |∇u| 6= 0 on ∂Ω, i.e.

(45) φ0(x) =

{

d(x, ∂Ω0), if x ∈ (Ω0)
c,

−d(x, ∂Ω0), if x ∈ Ω0.

The fast marching method [39] and the fast sweeping method [50] are efficient methods to compute the signed
distance function.
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5.1. Level set method and volume expression of the shape derivative. In the case of the distributed shape
derivative (22), we do not extend ϑn to D, instead we obtain directly a descent direction θ defined in D by solving
(39), where dJvol(Ω; θ) is given by (22). Thus, unlike the usual level set method, θ is not necessarily normal to
∂Ωt and φ is not governed by (44) but rather by the Hamilton-Jacobi equation (43).

In shape optimization, ϑn usually depends on the solution of one or several PDEs and their gradient. Since the
boundary ∂Ωt in general does not match the grid nodes where φ and the solutions of the partial differential equa-
tions are defined in the numerical application, the computation and extension of ϑn may require the interpolation
on ∂Ωt of functions defined at the grid points only, complicating the numerical implementation and introducing an
additional interpolation error. This is an issue in particular for interface problems, such as the problem of elasticity
with ersatz material studied in this paper, where ϑn is the jump of a function across the interface, as in (37), which
requires several interpolations and is error-prone. In the distributed shape derivative framework, θ only needs to
be defined at grid nodes.

5.2. Discretization of the Hamilton-Jacobi equation. Let D = (0, 1)× (0, 1) to simplify the presentation. For
the discretization of the Hamilton-Jacobi equation (43), we first define the mesh grid corresponding to D. We
introduce the nodes Pij whose coordinates are given by (i∆x, j∆y), 1 ≤ i, j ≤ N where ∆x and ∆y are the
steps of the discretization in the x and y directions, respectively. Let us write tk = k∆t for the discrete time, with
k ∈ N and ∆t is the time step. Denote the approximation φkij ≃ φ(Pij , t

k).
In the usual level set method, equation (44) is discretized using an explicit upwind scheme proposed by Osher

and Sethian [33, 34, 39]. This scheme applies to the specific form (44) but is not suited to discretize (43) required
for our application. Equation (43) is of the form

(46) ∂tφ+H(∇φ) = 0 in D ×R
+,

whereH(∇φ) := θ ·∇φ is the so-called Hamiltonian. We use a Lax-Friedrichs flux, see [35], which writes in our
case:

ĤLF (p−, p+, q−, q+) = H

(

p− + p+

2
,
q− + q+

2

)

−
1

2
(p+ − p−)αx −

1

2
(p+ − p−)αy ,

where αx = |θx|, αy = |θy|, θ = (θx, θy) and

p− = D−
x φij =

φij − φi−1,j

∆x
, p+ = D+

x φij =
φi+1,j − φij

∆x
,

q− = D−
y φij =

φij − φi,j−1

∆y
, q+ = D+

y φij =
φi,j+1 − φij

∆y
,

(47)

are the backward and forward approximations of the x-derivative and y-derivative of φ at Pij , respectively. Using
a forward Euler time discretization, the numerical scheme corresponding to (43) is

(48) φk+1
ij = φkij −∆t ĤLF (p−, p+, q−, q+)

where p−, p+, q−, q+ are computed for φkij .

5.3. Reinitialization. For numerical accuracy, the solution of the level set equation (43) should not be too flat or
too steep. This is fulfilled for instance if φ is the distance function i.e. |∇φ| = 1. Even if one initializes φ using a
signed distance function, the solution φ of the level set equation (43) does not generally remain close to a distance
function, thus we regularly perform a reinitialization of φ; see [14].

We present here briefly the procedure for the reinitialization introduced in [38]. The reinitialization at time t is
performed by solving to steady state the following Hamilton-Jacobi type equation

∂τϕ+ S(φ)(|∇ϕ| − 1) = 0 in D ×R
+,

ϕ(x, 0) = φ(x, t), x ∈ D,

where S(φ) is an approximation of the sign function

(49) S(φ) =
φ

√

φ2 + |∇φ|2ǫ2s
,

with ǫs = min(∆x,∆y).
For the discretization we use the standard explicit upwind scheme; see [33, 34, 39],

ϕk+1
ij = ϕk

ij −∆t K(p−, p+, q−, q+),(50)

where

K(p−, p+, q−, q+) = max(S(φij), 0)K
+ +min(S(φij), 0)K

−,(51)
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and

K+ =
[

max(p−, 0)2 +min(p+, 0)2 +max(q−, 0)2 +min(q+, 0)2
]1/2

,(52)

K− =
[

min(p−, 0)2 +max(p+, 0)2 +min(q−, 0)2 +max(q+, 0)2
]1/2

,(53)

and where p−, p+, q−, q+ are computed for φkij using (47).

6. IMPLEMENTATION

In this section we explain the implementation step by step. The code presented in this paper has been written
for FEniCS 2017.1, and is compatible with FEniCS 2016.2. With a small number of modifications, the code may
also run with earlier versions of FEniCS. The code can be downloaded at http://antoinelaurain.com/
compliance.htm.

6.1. Introduction. We explain the code for the case of the compliance, i.e. (c1, c2, c3) = (1, 0, 0) in (12) and
Γs = ∅, and we consider an additional volume constraint, so the functional that we minimize is

(54) J (Ω) := J(Ω) + ΛV(Ω),

where Λ is a constant and V(Ω) is the volume of Ω.
The main file compliance.py can be found in the appendix, and we use a file init.py to initialize the data

which depend on the chosen case. The user can choose between the six following cases: half_wheel, bridge,
cantilever, cantilever_asymmetric, MBB_beam, and cantilever_twoforces. For instance, to run the
cantilever case, the command line is

python compliance.py cantilever

An important feature of the code is that we use two separate grids. On one hand, D is discretized using a
structured grid mesh made of isosceles triangles (each square is divided into four triangles), which is used to
compute the solution U of the elasticity system, and also to compute the descent direction th corresponding to
θ. The spaces V and Vvec are spaces of scalar and vector-valued functions on mesh, respectively. On the other
hand, we use an additional Cartesian grid, whose vertices are included in the set of vertices of mesh, to implement
the numerical scheme (48) to solve the Hamilton-Jacobi equation, and also to perform the reinitialization (50).
In compliance.py, the quantities defined on the Cartesian grid are matrices and therefore distinguished by the
suffix mat. For instance phi is a function defined on mesh, while phi_mat is the corresponding function defined
on the Cartesian grid. We need a mechanism to alternate between functions defined on mesh and functions defined
on the Cartesian grid. This is explained in detail in Section 6.5.

In the first few lines of the code, we import the modules dolfin, init, cm and pyplot from matplotlib,
numpy, sys and os. The module matplotlib (http://matplotlib.org/) is used for plotting the design.
The module dolfin is a problem-solving environment required by FEniCS. The purpose of the line

9 pp.switch_backend(’Agg’)

is to use the Agg back end instead of the default WebAgg back end. With the Agg back end, the figures do not
appear on the screen, but are saved to a file; see lines 106-113.

6.2. Initialization of case-dependent parameters. In this section we describe the content of the file init.py,
which provides initial data. The outputs of init.py are the case-dependent variables, i.e. Lag, Nx, Ny, lx,
ly, Load, Name, ds, bcd, mesh, phi_mat. The space Vvec is not case-dependent but is required to define the
boundary conditions bcd.

The Lagrange multiplier Λ for the volume constraint is called here Lag. The variable Load is the position of
the pointwise load, for example Load = [Point(lx, 0.5)] for the cantilever, which means that the load is
applied at the point (lx, 0.5). For the asymmetric cantilever we have Load = [Point(lx, 0.0)].

The fixed domain D is a rectangle D = [0, lx] × [0, ly]. In init.py this corresponds to the variables lx,ly.
The mesh is built using the line

mesh = RectangleMesh(Point(0.0,0.0),Point(lx,ly),Nx,Ny,’crossed’)

The class RectangleMesh creates a mesh in a 2D rectangle spanned by two points (opposing corners) of the
rectangle. The arguments Nx,Ny specify the number of divisions in the x- and y-directions, and the optional
argumentcrossedmeans that each square of the grid is divided in four triangles, defined by the crossing diagonals
of the square. We choose lx,ly,Nx,Nywith the constraintlx Nx−1 = ly Ny−1. The choice of the argument
crossed is necessary to have a symmetric displacement u and in turn to keep a symmetric design throughout the
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iterations if the problem is symmetric, for instance in the case of the cantilever. Note that to preserve the symmetry
of solutions at all time, one must choose an odd number of divisions Nx or Ny, depending on the orientation of the
symmetry. For instance, in the case of the symmetric cantilever, one can choose Ny= 75 since the symmetry axis
is the line y = 1/2, and Nx= 150.

Since we chose a mesh with crossed diagonals, each square has an additional vertex at its center, where the
diagonals meet. Therefore the total number of vertices is

37 dofsV_max =(Nx+1)*(Ny+1) + Nx*Ny

We also define dofsVvec_max = 2*dofsV_max in line 37, this represents the degrees of freedom for the vector
function space Vvec.

The case-dependent boundary Γd is defined using the class DirBd, and instantiated by dirBd = DirBd() in
init.py. We tag dirBd with the number 1, the other boundaries with 0, and introduce the boundary measure ds.
The Dirichlet boundary condition on Γd is defined using

DirichletBC(Vvec,(0.0,0.0),boundaries,1)

When several types of Dirichlet boundary conditions are required, as in the case of the half-wheel for instance,
the variable bcd is defined as a list of boundary conditions. For the cantilever, bcd has only one element. For
the cases of the half-wheel and MBB-beam, we also define an additional class DirBd2 to define the boundary
conditions bcd because there are two different types of Dirichlet conditions; see Sections 7.3 and 7.5.

6.3. Other initialization parameters. The ersatz material coefficient ǫ is called eps_er; see (6). The elasticity
parameters E, ν, µ, λ are given lines 14-15. In lines 17-19, a directory is created to save the results. In line 21,
ls_max = 3 is the maximum number of line searches for one iteration of the main loop, ls is an iteration counter
for the line search, and the step size used in the gradient method is beta, initialized as beta0_init. We choose
beta0_init = 0.5. We also choose gamma = 0.8 and gamma2 = 0.8, which are used to modify the step
size in the line search; see Section 6.10.

The counter It in line 25 keeps track of the iterations of the main loop. In line 25, we also fix a maximum
number of iterations ItMax = int(1.5*Nx), which depends on the mesh size Nx due to the fact that the time
step dt is a decreasing function of Nx; see Section 6.12.

6.4. Finite elements. In line 28 and in the file init.py, we define the following finite element spaces associated
with mesh:

V = FunctionSpace(mesh, ’CG’, 1)

Vvec = VectorFunctionSpace(mesh, ’CG’, 1)

Here, CG is short for “continuous Galerkin”, and the last argument is the degree of the element, meaning we
have chosen the standard piecewise linear Lagrange elements. Note that the type of elements and degree can be
easily modified using this command, and FEniCS offers a variety of them. However, the level set part of our code
has been written for this particular type of elements, so changing it would require to modify other parts of the
code, such as the function _comp_lsf line 173, so one should be aware that it would not be a straightforward
modification.

6.5. The function _comp_lsf. Here we explain the mechanism to get phi from phi_mat. Indeed phi_mat is
updated every iteration by the function _hj in line 100, and we need phi to define the new set Omega in lines
42-44. Observe that the set of vertices of the Cartesian grid is included in the set of vertices of mesh, indeed the
vertices of mesh are precisely the vertices of the Cartesian grid, plus the vertices in the center of the squares where
the diagonals meet, due to the choice of the argument crossed in mesh. Thus we compute the values of phi at
the center of the squares using interpolation.

This is done in the function _comp_lsf (lines 173-182) in the following way. First of all, in lines 33-34,
dofsV and dofsVvec are the coordinates of the vertices associated with the degrees of freedom. They are used
in lines 35-36 to define px, py and pxvec, pyvec, which have integer values and are used by _comp_lsf to find
the correspondence between the entries of the matrix phi_mat and the entries of phi. In _comp_lsf, precisely
line 175, we check if the vertex associated with px, py corresponds to a vertex on the Cartesian grid. If this is
the case, we set the values of phi in lines 176-177 to be equal to the values of phi_mat at the vertices which are
common between mesh and the Cartesian grid. Otherwise, the vertex is at the center of a square, and we set the
value at this vertex to be the mean value of the four vertices of the surrounding square; see lines 179-181.

Thus the output of _comp_lsf is the function phi defined on mesh. Note that if we had chosen squares with
just one diagonal (choosing left or right instead of crossed in RectangleMesh in the file init.py) instead
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of two, there would be an exact correspondence between phi and phi_mat, so that switching between the two
would be easier.

6.6. Initialization of the level set function. In lines 39-40, we initialize phi as a function in the space V, and
using _comp_lsfwe determine its entries using phi_mat. The matrix phi_mat is initialized in the file init.py,
since it is case-dependent. For instance, for the cantilever we can choose

φ(x, y) =− cos(8πx/lx) cos(4πy)− 0.4 + max(200(0.01− x2 − (y − ly/2)
2), 0)

+ max(100(x+ y − lx − ly + 0.1), 0) + max(100(x− y − lx + 0.1), 0),
(55)

which is the initialization yielding the result in Figure 3. The coefficients inside the cosine determine the initial
number of “holes” inside the domain (i.e. the number of connected components of D \Ω). Here (55) corresponds
to ten initial holes inside the domains (plus some half-holes on the boundary of D).

The reason for the additional three max terms in (55) is specific of our approach. Since θ ∈ Θk(D), we have
θ = 0 in the corners of the rectangle D. Therefore the shape in a small neighbourhood of the corners will not
change, and if we start with an inappropriate initialization, we will end with a small set of unwanted material in
certain corners. Therefore the rôle of the max-terms in (55) is to create a small cut with the correct material in
certain corners. Depending on the problem, it is easy to see what should be the correct corner material distribution
for the final design.

Another problem may appear at boundary points which are on the symmetry axis for symmetric problems.
Indeed, due to the smoothness of θ and the symmetry of the problem, we will get θx = 0 or θy = 0 at these points
and the shape will not change there. For instance in the symmetric cantilever case, this problem happens at the
point [0, ly/2]. There is no issues at [lx, ly/2], since this is the point where the load is applied, so it must be fixed
anyway. This explains the term max(200(0.01− x2 − (y − ly/2)

2), 0) in (55).
In line 46 we define the integration measure dX used line 50 to integrate on all of D. In line 47 the normal

vector n to D is introduced to define the boundary conditions for av in line 51.

6.7. Domain update. The main loop starts line 55. In line 57 we instantiate by omega = Omega(). This either
initializes omega or updates omega if phi has been updated inside the loop. In line 59, omega is tagged with the
number 1, and the complementary of omega is tagged with the number 0 in line 58. We define the integration
measure for the subdomains Ω and D \ Ω using

60 dx = Measure(’dx’)(subdomain_data=domains)

One assembles using dx(1) to integrate on Ω, and using dx(0) to integrate on D\Ω; see for instance line 68. For
details on how to integrate on specific subdomains and boundaries, we refer to the FEniCS Tutorial [27] available
at http://www.springer.com/gp/book/9783319524610 and the FEniCS documentation [30].

6.8. Solving the elasticity system. Then we can compute U, the solution of the elasticity system in lines 61-62,
using _solve_PDE in lines 116-127. We use a LU solver to solve the system; see lines 125-126. The surface load
is applied pointwise using the function PointSource; see lines 122-124. Note that U is a list since we consider
the general case of several loads. Thus the length of the list U is the length of Load; see line 30.

6.9. Cost functional update. In lines 64-70 we compute the compliance, the volume of omega and the cost
functional J corresponding to (54). Observe that the command for the calculation of the compliance is close to
the mathematical notation, i.e. it resembles the following mathematical formula:

J(Ω) = ǫ

∫

D\Ω

S1 : Dθ +

∫

Ω

S1 : Dθ, S1 = 2µe(u) : e(u) + λ tr(e(u))2.

Recall that the compliance is a sum in the case of several loads, see Section 3.5, hence the for loop in line 65.

6.10. Line search and stopping criterion. The line search starts at line 72. If the criterion

72 J[It] > J[It-1]

is satisfied, then we reject the current step. In this case we reduce the step size beta by multiplying it by gamma

in line 74. Also, we go back to the previous values of phi_mat and phi which were stored in phi_mat_old and
phi_old, see line 75. Then we need to recalculate phi_mat and phi in lines 76-77 using the new step size beta.

If the step is not rejected, then we go to the next iteration starting from line 85. If the step was accepted in the
first iteration of the line search, in order to speed up the algorithm we increase the reference step size beta0 by
setting

86 beta0 = min(beta0 / gamma2, 1)
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to take larger steps, since gamma2 is smaller than one. Here beta0 is kept below 1 to stabilize the numerical
scheme for the Hamilton-Jacobi equation, see the time step dt in line 150. We chose gamma2 = 0.8 in our
examples; see line 21.

If the maximum number of line searches ls_max is reached, we decrease in line 85 the reference step size
beta0 by setting

85 beta0 = max(beta0 * gamma2, 0.1*beta0_init)

We impose the lower limit 0.1*beta0_init on beta0 so that the step size does not become too small. Note that
beta is reseted to beta0 in line 88.

6.11. Descent direction. FEniCS uses the Unified Form Language (UFL) for representing weak formulations of
partial differential equations, which results in an intuitive notation, close to the mathematical one. This can be
seen in lines 49-51, where we define the matrix av which corresponds to the bilinear form (40). Here theta and
xi are functions in Vvec, xi is the test function in (39), while theta corresponds to θ in (39). In our code, we
use the notation th for θ when θ is the descent direction. The coefficient 1.0e4 in the boundary conditions for
av:

51 1.0e4*(inner(dot(theta,n),dot(xi,n)) *(ds(0)+ds(1)+ds(2)))

forces θ · n to be close to zero on ∂D, which corresponds to the constraint θ ∈ Θk(D). For cases where dirBd2
is not defined, such as the cantilever case, the term +ds(2) has no effect.

We assemble the matrix for the PDE of th and define the LU solver in lines 50-53, before the start of the
main loop. Indeed, the bilinear form B in (40) is independent of Ω. Thus we reuse the factorization of the LU
solver to solve the PDE for th using the parameter reuse_factorization in line 53. This allows to spare
some calculations, but for grids larger than the ones considered in this paper, it would be appropriate to use more
efficient approaches such as Krylov methods to solve the PDE. This can be done easily with FEniCS using one of
the various available solvers.

In line 90, we compute the descent direction th. The function _shape_der in lines 129-139 solves the PDE for
θ, i.e. it implements (39)-(40) using the volume expression of the shape derivative (22) and (25). The variational
formulation used in our code for the case of one load is: find θ ∈ Hk

d (D)m such that
∫

D

α1Dθ : Dξ + α2θ · ξ = −dJ vol(Ω, ξ), ∀ξ ∈ H1(D)m(56)

where dJ vol(Ω, ξ) =

∫

D

(2DuTAΩe(u)−AΩe(u) : e(u)Id) : Dξ + Λ

∫

Ω

div ξ,

and with α1 = 1 and α2 = 0.1. When several loads are applied, as in the case of cantilever_twoforces, the
right-hand side in (56) should be replaced by a sum over the loads u in u_vec; see Section 3.5.

The right-hand side of (56) is assembled in line 136, but we need to integrate separately on Ω and D \ Ω using
dx(1) and dx(0), respectively. The system is solved line 138 using the solver defined line 52.

In line 90 we get the descent direction th in the space Vvec. To update phi we need th on the Cartesian grid.
As we explained already, we just need to extract the appropriate values of th since the Cartesian grid is included
in mesh. This is done in lines 91-97, and the corresponding function on the Cartesian grid is called th_mat.

6.12. Update the level set function. Then, we proceed to update the level set function phi_mat using the sub-
function _hj. The subfunction _hj in lines 141-152 follows exactly the discretization procedure described in
Section 5.2. In lines 143-146, the quantities Dxm, Dxp, Dyp, Dym correspond to p−, p+, q+, q−, respectively. In
line 142, we take 10 steps of the Hamilton-Jacobi update, which is a standard, although heuristic way, to accelerate
the convergence. In order to stabilize the numerical scheme, we choose the time step as

150 dt = beta*lx / (Nx*maxv)

where maxv is equal to maxΩ(|θ1| + |θ2|), lx/Nx is the cell size, and the step size beta is smaller than 1 at all
time in view of line 86. In line 99, we save the current versions of phi and phi_mat in the variables phi_old,
phi_mat_old, for use in case the step gets rejected during the line search. In line 102, the function phi is
extrapolated from phi_mat using _comp_lsf.

6.13. Reinitialization of the level set function. Every 5 iterations, we reinitialize the level set function in line
101. This is achieved by the subfunction _reinit in lines 154-171. The reinitialization follows the procedure
described in Section 5.3. In lines 161-164, Dxm, Dxp, Dyp, Dym correspond to p−, p+, q+, q−, respectively. In
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FIGURE 3. Optimal design for the symmetric cantilever, with Λ = 40, and initialization (55).

lines 165 to 168, Kp and Km correspond toK+ andK− from (52)-(53), respectively. Line 169 corresponds to (51)
and line 170 to the update (50).

The function signum, computed in line 159, is the approximation of the sign function of φ corresponding to
S(φ), defined in (49). To compute signum, we use lx/Nx for ǫs, and |∇φ| is computed using symmetric finite
differences φ, which are given by Dxs and Dys in lines 155-158.

6.14. Stopping criterion and saving figures. Finally in lines 104-105, we check if the stopping criterion

104 if It>20 and max(abs(J[It-5:It]-J[It-1])) <2.0*J[It-1]/Nx**2:

is satisfied. Here, It-1 is the current iteration. This means that the algorithm stops when the maximum difference
of the value of the cost functional at the current iteration with the values of the four previous iterations is below
a certain threshold. In order to take smaller steps when the grid gets finer, we have determined heuristically the
threshold 2.0*J[It-1]/Nx**2 which depends on the grid size Nx.

Lines 107-113 are devoted to plotting the design. The filled contour of the zero level set of phi_mat is drawn
using the pyplot function contourf; see the matplotlib documentation http://matplotlib.org/ for
details.

7. NUMERICAL RESULTS AND CASE-DEPENDENT PARAMETERS

In this section we discuss the case-dependent parameters in init.py such as boundary conditions, load posi-
tion, and Lagrangian Λ.

7.1. Symmetric cantilever. For the symmetric cantilever the load is placed at the point (lx, ly/2), see the pa-
rameter Load. The initialization for the symmetric cantilever is given by (55). See Figure 3 for the results of
the symmetric cantilever for several grid sizes and Λ = 40. See also Figure 9 for a comparison of two different
initializations. We observe that the optimal set is independent of the mesh size, but depends on the initialization.

To obtain a short symmetric cantilever, one can set lx = ly and Nx = Ny. Still, one should choose an odd
number for Nx in order to preserve the symmetry of the problem.

7.2. Asymmetric cantilever. We take Load = [Point(lx, 0.0)] for the asymmetric cantilever, to have a
load in the lower right corner. The initialization is also changed, so as to start with the material phase where the
load is applied, more precisely, we choose

φ(x, y) =− cos(6πx/lx) cos(4πy)− 0.4 + max(100(x+ y − lx − ly + 0.1), 0).

See Figure 4 for the results of the asymmetric cantilever for several grid sizes, for Λ = 60 and Λ = 70.

7.3. Half-wheel. For the half-wheel we have lx,ly = [2.0,1.0]. The position of the load is given by Load
= [Point(lx/2, 0.0)]. In the corner (0.0, 0.0) we need pointwise Dirichlet conditions and rolling conditions
in (lx, 0.0). For this we use the following boundaries in init_py:

class DirBd(SubDomain):

def inside(self, x, on_boundary):

return abs(x[0])< tol and abs(x[1])< tol

class DirBd2(SubDomain):

def inside(self, x, on_boundary):

return abs(x[0]-lx)<tol and abs(x[1])<tol

dirBd,dirBd2 = [DirBd(),DirBd2()]

where tol = 1E-14. Then the two boundary parts are tagged with different numbers
15
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FIGURE 4. Optimal design for the asymmetric cantilever, Λ = 60 (first row), Λ = 70 (second row).
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FIGURE 5. Optimal design for the half-wheel, Λ = 30 (first row), Λ = 50 (second row).

dirBd.mark(boundaries, 1)

dirBd2.mark(boundaries, 2),

and we define the vector of boundary conditions as

bcd = [DirichletBC(Vvec, (0.0,0.0), dirBd, method=’pointwise’),\

DirichletBC(Vvec.sub(1), 0.0, dirBd2,method=’pointwise’)]

The method pointwise is used since dirBd2 is a single point. Note here that the rolling boundary condition
is achieved by setting the component Vvec.sub(1) to 0, indeed Vvec.sub(1) represents the y-component of
a vector function taken in the space Vvec . In lines 50-51 of compliance.py, approximate Dirichlet conditions
for θ are applied on dirBd and dirBd2 as these corners should be fixed.

The initialization should also change to fit the half-wheel case. We chose

phi_mat = -np.cos((3.0*pi*(XX-1.0))) * np.cos(7*pi*YY) - 0.3

+ np.minimum(5.0/ly *(YY-1.0) + 4.0,0) \

+ np.maximum(100.0*(XX+YY-lx-ly+0.1),.0) + np.maximum(100.0*(-XX+YY-ly+0.1),.0)

In Figure 5 we compare results obtained with Λ = 30 and Λ = 50.

7.4. Bridge. The case of the bridge is similar to the case of the half-wheel. The main difference is the pointwise
Dirichlet condition in the lower right corner, which corresponds to
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FIGURE 6. Optimal design for the bridge, Λ = 20 (first row) and Λ = 30 (second row).

DirichletBC(Vvec, (0.0,0.0), dirBd2, method=’pointwise’)

Also for the initialization we take

phi_mat = -np.cos((4.0*pi*(XX-1.0))) * np.cos(4*pi*YY) - 0.2 \

+ np.maximum(100.0*(YY-ly+0.05),.0)

See Figure 6 for numerical results for the bridge, with Λ = 20 and Λ = 30.

7.5. MBB-beam. We define the MBB beam as in the original paper [41]. We use the symmetry of the problem
to compute the solution only on the right half of the domain. Thus we impose rolling boundary condition on the
left side of the computational domain D, which corresponds to u · n = 0. We take lx=3.0 and ly=1.0, and Nx,
Ny must be chosen accordingly, so as to keep a regular grid. For instance, we can choose Nx=150, Ny=50. We
take Load = [Point(0.0, 1.0)].

We also have pointwise rolling boundary conditions on the lower right corner of D. In init.py this corre-
sponds to the following definitions of the boundaries:

class DirBd(SubDomain):

def inside(self, x, on_boundary):

return near(x[0],.0)

class DirBd2(SubDomain):

def inside(self, x, on_boundary):

return abs(x[0]-lx) < tol and abs(x[1])<tol

dirBd,dirBd2 = [DirBd(),DirBd2()]

Then the boundaries are tagged with different numbers:

dirBd.mark(boundaries, 1)

dirBd2.mark(boundaries, 2)

We define the boundary conditions on the two boundaries dirBd and dirBd2:

bcd=[DirichletBC(Vvec.sub(0),0.0,boundaries,1),\

DirichletBC(Vvec.sub(1), 0.0, dirBd2,method=’pointwise’)]

Also, the term +ds(2) in lines 50-51 is active since dirBd2 is not empty, as for the half-wheel case. We also
choose an appropriate initialization

phi_mat = -np.cos(4.0/lx*pi*XX) *np.cos(4.0*pi*YY)-0.4\

+np.maximum(100.0*(XX+YY-lx-ly+0.1),.0) +np.minimum(5.0/ly *(YY-1.0) + 4.0,0)

See Figure 7 for the MBB-beam case with Λ = 130.
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FIGURE 7. Optimal design for the MBB-Beam, Λ = 130.
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FIGURE 8. Optimal design for the cantilever with two loads, Λ = 60.

7.6. Multiple load cases. We have for this case that

Load = [Point(lx, 0.0),Point(lx, 1.0)]

is a list. In line 30 of compliance.py, U is thus a list with two elements corresponding to the two loads. This
explains the for loop in _shape_der (see line 132).

We illustrate multiple load cases with a cantilever problem with two loads applied at the bottom-right corner
and the top-right corner, both with equal intensities to get a symmetric design. Here the Lagrangian is taken as
Λ = 60. The results are shown in Figure 8. We use the initialization

phi_mat = -np.cos(4.0*pi*(XX-0.5)) * np.cos(4.0*pi*(YY-0.5)) - 0.6 \

-np.maximum(50.0*(YY-ly+0.1),.0)- np.maximum(50.0*(-YY+0.1),.0)

7.7. Inverter. Mechanisms require additional modifications of the code, therefore we discuss here briefly the
main differences and provide the code for the inverter separately as the file mechanism.py. The code can be
downloaded at http://antoinelaurain.com/compliance.htm. To run the inverter, type

python mechanism.py inverter

Unlike the compliance, the case of compliance mechanisms is not self-adjoint, therefore we need to compute
an adjoint given by (27). For this we add a subfunction _solve_adj to compute the adjoint. The function
_solve_adj works like _solve_pde, but implements the right-hand side corresponding to (27). The modifi-
cation of the objective functional and of _shape_der follows the description of Section 3.6 in a straightforward
way. In the init.py file, we define the boundaries outputBd and inputBd which correspond to Γout and Γin

of Section 3.6, respectively.
We take Γin = {0} × (0.47, 0.53) and Γout = {1} × (0.43, 0.57). In order to keep the regions around Γout

and Γin fixed, we define and tag the following small region in mechanism.py

class Fixed(SubDomain):

def inside(self, x, on_boundary):

return (between(x[0], (.0,.05)) and between(x[1], (.48,.52)))\

or (between(x[0], (.9,1.0)) and between(x[1], (.43,.57)) )

fixed = Fixed()

fixed.mark(domains, 2)
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FIGURE 9. Optimal design for the symmetric cantilever, with Λ = 40 and two different ini-
tial guesses. First column: initial guess, second column: optimal design for (Nx,Ny) =
(202, 101), third column: optimal design for (Nx,Ny) = (302, 151). The first line uses initial-
ization (57), the second line uses initialization (55).

This is used in the following definition

av = assemble((inner(grad(theta),grad(xi)) +0.1*inner(theta,xi))*dx(0)\

+1.0e5*inner(theta,xi) * dx(2)\

+1.0e5*(inner(dot(theta,n),dot(xi,n)) * (ds(0)+ds(1)+ds(2)+ds(3))) )

The large coefficient 1.0e5 in the subdomain fixed forces th to be close to zero during the entire process.
We add a volume term to the objective functional with the coefficientΛ = 0.01. We choose the parameters ks =

0.01, ǫ = 0.01, E = 20, ηin = 2, ηout = 1, lx=1.0, ly=1.0, beta0_init = 1.0, ItMax = int(2.0*Nx)

and delta = PointSource(V.sub(0), Load, 0.05) in function _solve_pde. The other parameters are
the same as in compliance.py. For the initialization of phi_mat we refer to the file init.py. See Figure 2 and
Section 3.6 for a description of the design domain, boundary conditions and optimal design.

8. INITIALIZATION AND COMPUTATION TIME

8.1. Influence of initialization. It is known that the final result may depend on the initial guess for the mini-
mization of the compliance. We observe this phenomenon in our algorithm, as illustrated in Figure 9, where two
different initializations provide two different optimal designs. We compare initialization (55) with

φ(x, y) =− cos(6πx/lx) cos(4πy)− 0.6 + max(200(0.01− x2 − (y − ly/2)
2), 0)

+ max(100(x+ y − lx − ly + 0.1), 0) + max(100(x− y − lx + 0.1), 0).
(57)

The choice φ(x, y) = − cos(6πx/lx) cos(4πy) − 0.6 corresponds to a standard choice of seven holes inside the
domain for the 2 × 1 cantilever; see [31]. It can be seen in Figure 9 that the initialization with the higher number
of holes provides an optimal design D \ Ω with more connected components.

8.2. Computation time. The numerical tests were run on a PC with four processors Intel Core2 Q9400, 2.66
GHz, 3.8 GB memory, with LinuxMint 17 and FEniCS 2017.1. In Tables 1 and 2 we show the computation time
for the symmetric and asymmetric cantilevers. The average time for one iteration is computed by averaging over
all iterations. However, it is not counting the time spent by init.py, and the time spent when the line search is
performed, i.e. the time is recorded only for steps which are accepted.

Since we use a mesh with crossed elements, the number of elements is dofsV_max = (Nx+1)*(Ny+1)+

Nx*Ny, see line 37. We solve two partial differential equations during each iteration (again, without counting the
line search, and assuming we have only one load), one to compute U, and one to compute th. Since these are
vectors, the number of degrees of freedom for solving each of these PDEs is

2*dofsV_max = 2*((Nx+1)*(Ny+1) + Nx*Ny)

For instance for the case (Nx,Ny)=(302,151), as in Table 1, we get 91, 658 elements and 183, 316 degrees of
freedoms. When comparing with the computational time for an algorithm such as the one described in [7], one
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TABLE 1. Computation time for the asymmetric cantilever benchmark for Λ = 60.

Mesh size 102× 51 202× 101 302× 151

Number of elements 10,558 41,108 91,658

ItMax 153 303 453

Total iterations 72 303 377

Average time per iteration (s) 2.02 7.90 18.00

Total time (h:m:s) 0:04:27 1:07:13 2:12:54

TABLE 2. Computation time for the symmetric cantilever benchmark for Λ = 40 and initial-
ization (57).

Mesh size 102× 51 202× 101 302× 151

Number of elements 10,558 41,108 91,658

ItMax 153 303 453

Total iterations 60 82 247

Average time per iteration (s) 2.00 8.25 18.20

Total time (h:m:s) 0:04:56 0:18:00 2:17:37

should use the number of elements as the basis for comparison. For example, a 300×100mesh in [7] gives 30,000
elements, corresponding approximately to a grid of 170× 85, which gives 29, 156 elements for our code.

The computation time is comparable with the results in [7], although slightly slower, for the same number of
elements. Comparing with the educational code from [13], which is also based on the level set method, our code
is significantly faster. Indeed, it was observed in [22] that the code of [13] takes a long time to converge if the
mesh discretization is greater than 5, 000 elements. In [22] the authors have improved its efficiency by using a
sparse matrix assembly, but they did not report on computation time.

9. CONCLUSION

We have presented a FEniCS code for structural optimization based on the level set method. The principal
feature of the code is to rely on the notion of distributed shape derivative, which is easy to implement with
FEniCS, and on the corresponding reformulation of the level set equation. We have shown how to compute the
distributed shape derivative for a fairly general functional which can be used for compliance minimization and
compliant mechanisms in particular. Various benchmarks of compliance minimization were tested, as well as an
example of inverter mechanism.

We encourage students and newcomers to the field to experiment with new examples and parameters. The code
can be used as a basis for more advanced problems. One could take advantage of the versatility of FEniCS to solve
various types of PDEs, and adapt the code for multiphysics problems. An extension to three dimensions is also
relatively easy using FEniCS, since the variational formulation is independent on the dimension. The main effort
for extending the present code to three dimensions resides in adapting the numerical scheme for the level set part.
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10. APPENDIX: FENICS CODE compliance.py

1 # ----------------------------------------------------------------------

2 # FEniCS 2017.1 code for level set-based structural optimization.

3 # Written by Antoine Laurain, 2017

4 # ----------------------------------------------------------------------
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5 from dolfin import *

6 from init import *

7 from matplotlib import cm,pyplot as pp

8 import numpy as np, sys, os

9 pp.switch_backend(’Agg’)

10 set_log_level(ERROR)

11 # ----------------------------------------------------------------------

12 def _main():

13 Lag,Nx,Ny,lx,ly,Load,Name,ds,bcd,mesh,phi_mat,Vvec=init(sys.argv[1])

14 eps_er, E, nu = [0.001, 1.0, 0.3] # Elasticity parameters

15 mu,lmbda = Constant(E/(2*(1 + nu))),Constant(E*nu/((1+nu)*(1-2*nu)))

16 # Create folder for saving files

17 rd = os.path.join(os.path.dirname(__file__),\

18 Name +’/LagVol=’ +str(np.int_(Lag))+’_Nx=’+str(Nx))

19 if not os.path.isdir(rd): os.makedirs(rd)

20 # Line search parameters

21 beta0_init,ls,ls_max,gamma,gamma2 = [0.5,0,3,0.8,0.8]

22 beta0 = beta0_init

23 beta = beta0

24 # Stopping criterion parameters

25 ItMax,It,stop = [int(1.5*Nx), 0, False]

26 # Cost functional and function space

27 J = np.zeros( ItMax )

28 V = FunctionSpace(mesh, ’CG’, 1)

29 VolUnit = project(Expression(’1.0’,degree=2),V) # to compute volume

30 U = [0]*len(Load) # initialize U

31 # Get vertices coordinates

32 gdim = mesh.geometry().dim()

33 dofsV = V.tabulate_dof_coordinates().reshape((-1, gdim))

34 dofsVvec = Vvec.tabulate_dof_coordinates().reshape((-1, gdim))

35 px,py = [(dofsV[:,0]/lx)*2*Nx, (dofsV[:,1]/ly)*2*Ny]

36 pxvec,pyvec = [(dofsVvec[:,0]/lx)*2*Nx, (dofsVvec[:,1]/ly)*2*Ny]

37 dofsV_max, dofsVvec_max =((Nx+1)*(Ny+1) + Nx*Ny)*np.array([1,2])

38 # Initialize phi

39 phi = Function( V )

40 phi = _comp_lsf(px,py,phi,phi_mat,dofsV_max)

41 # Define Omega = {phi<0}

42 class Omega(SubDomain):

43 def inside(self, x, on_boundary):

44 return .0 <= x[0] <= lx and .0 <= x[1] <= ly and phi(x) < 0

45 domains = CellFunction("size_t", mesh)

46 dX = Measure(’dx’)

47 n = FacetNormal(mesh)

48 # Define solver to compute descent direction th

49 theta,xi = [TrialFunction(Vvec), TestFunction( Vvec)]

50 av = assemble((inner(grad(theta),grad(xi)) +0.1*inner(theta,xi))*dX\

51 + 1.0e4*(inner(dot(theta,n),dot(xi,n)) * (ds(0)+ds(1)+ds(2))) )

52 solverav = LUSolver(av)

53 solverav.parameters[’reuse_factorization’] = True

54 #---------- MAIN LOOP ----------------------------------------------

55 while It < ItMax and stop == False:

56 # Update and tag Omega = {phi<0}, then solve elasticity system.

57 omega = Omega()

58 domains.set_all(0)

59 omega.mark(domains, 1)

60 dx = Measure(’dx’)(subdomain_data = domains)

61 for k in range(0,len(Load)):
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62 U[k] = _solve_pde(Vvec,dx,ds,eps_er,bcd,mu,lmbda,Load[k])

63 # Update cost functional

64 compliance = 0

65 for u in U:

66 eU = sym(grad(u))

67 S1 = 2.0*mu*inner(eU,eU) + lmbda*tr(eU)**2

68 compliance += assemble( eps_er*S1* dx(0) + S1*dx(1) )

69 vol = assemble( VolUnit*dx(1) )

70 J[It] = compliance + Lag * vol

71 # ------- LINE SEARCH ------------------------------------------

72 if It > 0 and J[It] > J[It-1] and ls < ls_max:

73 ls += 1

74 beta *= gamma

75 phi_mat,phi = [phi_mat_old,phi_old]

76 phi_mat = _hj(th_mat, phi_mat, lx,ly,Nx, Ny, beta)

77 phi = _comp_lsf(px,py,phi,phi_mat,dofsV_max)

78 print(’Line search iteration : %s’ % ls)

79 else:

80 print(’************ ITERATION NUMBER %s’ % It)

81 print(’Function value : %.2f’ % J[It])

82 print(’Compliance : %.2f’ % compliance)

83 print(’Volume fraction : %.2f’ % (vol/(lx*ly)))

84 # Decrease or increase line search step

85 if ls == ls_max: beta0 = max(beta0 * gamma2, 0.1*beta0_init)

86 if ls == 0: beta0 = min(beta0 / gamma2, 1)

87 # Reset beta and line search index

88 ls,beta,It = [0,beta0, It+1]

89 # Compute the descent direction th

90 th = _shape_der(Vvec,U,eps_er,mu,lmbda,dx,solverav,Lag)

91 th_array = th.vector().array()

92 th_mat = [np.zeros((Ny+1,Nx+1)),np.zeros((Ny+1,Nx+1))]

93 for dof in xrange(0, dofsVvec_max,2):

94 if np.rint(pxvec[dof]) %2 == .0:

95 cx,cy= np.int_(np.rint([pxvec[dof]/2,pyvec[dof]/2]))

96 th_mat[0][cy,cx] = th_array[dof]

97 th_mat[1][cy,cx] = th_array[dof+1]

98 # Update level set function phi using descent direction th

99 phi_old, phi_mat_old = [phi, phi_mat]

100 phi_mat = _hj(th_mat, phi_mat, lx,ly,Nx,Ny, beta)

101 if np.mod(It,5) == 0: phi_mat = _reinit(lx,ly,Nx,Ny,phi_mat)

102 phi = _comp_lsf(px,py,phi,phi_mat,dofsV_max)

103 #------------ STOPPING CRITERION ---------------------------

104 if It>20 and max(abs(J[It-5:It]-J[It-1]))<2.0*J[It-1]/Nx**2:

105 stop = True

106 #------------ Plot Geometry --------------------------------

107 if np.mod(It,10)==0 or It==1 or It==ItMax or stop==True:

108 pp.close()

109 pp.contourf(phi_mat,[-10.0,.0],extent = [.0,lx,.0,ly],\

110 cmap=cm.get_cmap(’bone’))

111 pp.axes().set_aspect(’equal’,’box’)

112 pp.show()

113 pp.savefig(rd+’/it_’+str(It)+’.pdf’,bbox_inches=’tight’)

114 return

115 # ----------------------------------------------------------------------

116 def _solve_pde(V, dx, ds, eps_er, bcd, mu, lmbda, Load):

117 u,v = [TrialFunction(V), TestFunction(V)]

118 S1 = 2.0*mu*inner(sym(grad(u)),sym(grad(v))) + lmbda*div(u)*div(v)
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119 A = assemble( S1*eps_er*dx(0) + S1*dx(1) )

120 b = assemble( inner(Expression((’0.0’, ’0.0’),degree=2) ,v) * ds(2))

121 U = Function(V)

122 delta = PointSource(V.sub(1), Load, -1.0)

123 delta.apply(b)

124 for bc in bcd: bc.apply(A,b)

125 solver = LUSolver(A)

126 solver.solve(U.vector(), b)

127 return U

128 #-----------------------------------------------------------------------

129 def _shape_der(Vvec, u_vec , eps_er, mu, lmbda, dx, solver, Lag):

130 xi = TestFunction(Vvec)

131 rv = 0.0

132 for u in u_vec:

133 eu,Du,Dxi = [sym(grad(u)),grad(u),grad(xi)]

134 S1 = 2*mu*(2*inner((Du.T)*eu,Dxi) -inner(eu,eu)*div(xi))\

135 + lmbda*(2*inner( Du.T, Dxi )*div(u) - div(u)*div(u)*div(xi) )

136 rv += -assemble(eps_er*S1*dx(0) + S1*dx(1) + Lag*div(xi)*dx(1))

137 th = Function(Vvec)

138 solver.solve(th.vector(), rv)

139 return th

140 #-----------------------------------------------------------------------

141 def _hj(v,psi,lx,ly,Nx,Ny,beta):

142 for k in range(10):

143 Dym = Ny*np.repeat(np.diff(psi,axis=0),[2]+[1]*(Ny-1),axis=0)/ly

144 Dyp = Ny*np.repeat(np.diff(psi,axis=0),[1]*(Ny-1)+[2],axis=0)/ly

145 Dxm = Nx*np.repeat(np.diff(psi),[2]+[1]*(Nx-1),axis=1)/lx

146 Dxp = Nx*np.repeat(np.diff(psi),[1]*(Nx-1)+[2],axis=1)/lx

147 g = 0.5*( v[0]*(Dxp + Dxm) + v[1]*(Dyp + Dym)) \

148 - 0.5*(np.abs(v[0])*(Dxp - Dxm) + np.abs(v[1])*(Dyp - Dym))

149 maxv = np.max(abs(v[0]) + abs(v[1]))

150 dt = beta*lx / (Nx*maxv)

151 psi = psi - dt*g

152 return psi

153 #-----------------------------------------------------------------------

154 def _reinit(lx,ly,Nx,Ny,psi):

155 Dxs = Nx*(np.repeat(np.diff(psi),[2]+[1]*(Nx-1),axis=1) \

156 +np.repeat(np.diff(psi),[1]*(Nx-1)+[2],axis=1))/(2*lx)

157 Dys = Ny*(np.repeat(np.diff(psi,axis=0),[2]+[1]*(Ny-1),axis=0)\

158 +np.repeat(np.diff(psi,axis=0),[1]*(Ny-1)+[2],axis=0))/(2*ly)

159 signum = psi / np.power(psi**2 + ((lx/Nx)**2)*(Dxs**2+Dys**2),0.5)

160 for k in range(0,2):

161 Dym = Ny*np.repeat(np.diff(psi,axis=0),[2]+[1]*(Ny-1),axis=0)/ly

162 Dyp = Ny*np.repeat(np.diff(psi,axis=0),[1]*(Ny-1)+[2],axis=0)/ly

163 Dxm = Nx*np.repeat(np.diff(psi),[2]+[1]*(Nx-1),axis=1)/lx

164 Dxp = Nx*np.repeat(np.diff(psi),[1]*(Nx-1)+[2],axis=1)/lx

165 Kp = np.sqrt((np.maximum(Dxm,0))**2 + (np.minimum(Dxp,0))**2 \

166 + (np.maximum(Dym,0))**2 + (np.minimum(Dyp,0))**2)

167 Km = np.sqrt((np.minimum(Dxm,0))**2 + (np.maximum(Dxp,0))**2 \

168 + (np.minimum(Dym,0))**2 + (np.maximum(Dyp,0))**2)

169 g = np.maximum(signum,0)*Kp + np.minimum(signum,0)*Km

170 psi = psi - (0.5*lx/Nx)*(g - signum)

171 return psi

172 #-----------------------------------------------------------------------

173 def _comp_lsf(px,py,phi,phi_mat,dofsV_max):

174 for dof in range(0,dofsV_max):

175 if np.rint(px[dof]) %2 == .0:
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176 cx,cy = np.int_(np.rint([px[dof]/2,py[dof]/2]))

177 phi.vector()[dof] = phi_mat[cy,cx]

178 else:

179 cx,cy = np.int_(np.floor([px[dof]/2,py[dof]/2]))

180 phi.vector()[dof] = 0.25*(phi_mat[cy,cx] + phi_mat[cy+1,cx]\

181 + phi_mat[cy,cx+1] + phi_mat[cy+1,cx+1])

182 return phi

183 # ----------------------------------------------------------------------

184 if __name__ == ’__main__’:

185 _main()
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